--- Paper in the spotlights, recently published---
Jade Bokma, Nick Vereecke, Hans Nauwynck, Freddy Haesebrouck, Sebastiaan Theuns, Bart Pardon, Filip Boyen
https://doi.org/10.1128/Spectrum.00262-21.
Mycoplasma bovis causes many health and welfare problems in cattle. Due to the absence of clear insights regarding transmission dynamics and the lack of a registered vaccine in Europe, control of an outbreak depends mainly on antimicrobial therapy. Unfortunately, antimicrobial susceptibility testing (AST) is usually not performed, because it is time-consuming and no standard protocol or clinical breakpoints are available. Fast identification of genetic markers associated with acquired resistance may at least partly resolve former issues. Therefore, the aims of this study were to implement a first genome-wide association study (GWAS) approach to identify genetic markers linked to anti-microbial resistance (AMR) in M. bovis using rapid long-read sequencing and to evaluate different epidemiological cutoff (ECOFF) thresholds. High-quality genomes of 100 M. bovis isolates were generated by Nanopore sequencing, and isolates were categorized as wild- type or non-wild-type isolates based on MIC testing results. Subsequently, a k-mer-based GWAS analysis was performed to link genotypes with phenotypes based on different ECOFF thresholds. This resulted in potential genetic markers for macrolides (gamithromycin and tylosin) (23S rRNA gene and 50S ribosomal unit) and enrofloxacin (GyrA and ParC). Also, for tilmicosin and the tetracyclines, previously described mutations in both 23S rRNA alleles and in one or both 16S rRNA alleles were observed. In addition, two new 16S rRNA mutations were possibly associated with gentamicin resistance. In conclusion, this study shows the potential of quick high-quality Nanopore sequencing and GWAS analysis in the evaluation of phenotypic ECOFF thresholds and the rapid identification of M. bovis strains with acquired resistance.
--- Paper in the spotlights, recently published---
Nick Vereecke, Flora Carnet, Stéphane Pronost, Katleen Vanschandevijl, Sebastiaan Theuns, Hans Nauwynck
https://doi.org/10.1128/MRA.00333-21
One of the most serious equine herpesvirus 1 (EHV-1) outbreaks in Europe was reported following the International CES Valencia Spring Tour (Spain) in February 2021, which was attended by 752 horses. As 17 dead horses and neurological disorders were reported, quarantine regulations were implemented quickly in Spain and other European Union countries to prevent further spread (19 March 2021). Nevertheless, the aggressive EHV-1 strain escaped Spain with outbreaks in nine countries, including Belgium and France (FEI Updates 2021, https://inside.fei.org/fei/ehv-1/department-updates?year=). Here, we report five genomes from EHV-1 isolates from affected horses in Belgium and France with links to the Spanish Tour in 2021, as obtained through rapid long-read sequencing.
Watch in the movie from minute 14:49
Chloë Dewitte, Nick Vereecke, Sebastiaan Theuns, Claudia De Ruyck, Francis Vercammen, Tim Bouts, Filip Boyen, Hans Nauwynck and Freddy Haesebrouck (2021).
https://doi.org/10.3390/microorganisms9040834
Broad-spectrum beta-lactamase (BSBL)-producing Enterobacteriaceae impose public health threats. With increased popularity of zoos, exotic animals are brought in close proximity of humans, making them important BSBL reservoirs. However, not much is known on the presence of BSBLs in zoos in Western Europe. Fecal carriage of BSBL-producing Enterobacteriaceae was investigated in 38 zoo mammals from two Belgian zoos. Presence of bla-genes was investigated using PCR, followed by whole-genome sequencing and Fourier-transform infrared spectroscopy to cluster acquired resistance encoding genes and clonality of BSBL-producing isolates. Thirty-five putatively ceftiofur-resistant isolates were obtained from 52.6% of the zoo mammals. Most isolates were identified as E. coli (25/35), of which 64.0% showed multidrug resistance (MDR). Most frequently detected bla-genes were CTX-M-1 (17/25) and TEM-1 (4/25). Phylogenetic trees confirmed clustering of almost all E. coli isolates obtained from the same animal species. Clustering of five isolates from an Amur tiger, an Amur leopard, and a spectacled bear was observed in Zoo 1, as well as for five isolates from a spotted hyena and an African lion in Zoo 2. This might indicate clonal expansion of an E. coli strain in both zoos. In conclusion, MDR BSBL-producing bacteria were shown to be present in the fecal microbiota of zoo mammals in two zoos in Belgium. Further research is necessary to investigate if these bacteria pose zoonotic and health risks.
Nick Vereecke, Jade Bokma, Freddy Haesebrouck, Hans Nauwynck, Filip Boyen, Bart Pardon & Sebastiaan Theuns (2020)
DOI https://doi.org/10.1186/s12859-020-03856-0
Implementation of Third-Generation Sequencing approaches for Whole Genome Sequencing (WGS) all-in-one diagnostics in human and veterinary medicine, requires the rapid and accurate generation of consensus genomes. Over the last years, Oxford Nanopore Technologies (ONT) released various new devices (e.g. the Flongle R9.4.1 flow cell) and bioinformatics tools (e.g. the in 2019-released Bonito basecaller), allowing cheap and user-friendly cost-efficient introduction in various NGS workflows. While single read, overall consensus accuracies, and completeness of genome sequences has been improved dramatically, further improvements are required when working with non-frequently sequenced organisms like Mycoplasma bovis. As an important primary respiratory pathogen in cattle, rapid M. bovis diagnostics is crucial to allow timely and targeted disease control and prevention. Current complete diagnostics (including identification, strain typing, and antimicrobial resistance (AMR) detection) require combined culture-based and molecular approaches, of which the first can take 1–2 weeks. At present, cheap and quick long read all-in-one WGS approaches can only be implemented if increased accuracies and genome completeness can be obtained.
Jade Bokma, Nick Vereecke, Koen De Bleecker, Jozefien Callens, Stefaan Ribbens, Hans Nauwynck, Freddy Haesebrouck, Sebastiaan Theuns, Filip Boyen, Bart Pardon (2020)
DOI https://doi.org/10.1186/s13567-020-00848-z, Veterinary Research
M. bovis is one of the leading causes of respiratory disease and antimicrobial use in cattle. The pathogen is widespread in different cattle industries worldwide, but highest prevalence is found in the veal industry. Knowledge on M. bovis strain distribution over the dairy, beef and veal industries is crucial for the design of effective control and prevention programs, but currently undocumented. Therefore, the present study evaluated the molecular epidemiology and genetic relatedness of M. bovis isolates obtained from Belgian beef, dairy and veal farms, and how these relate to M. bovis strains obtained worldwide. Full genomes of one hundred Belgian M. bovis isolates collected over a 5-year period (2014-2019), obtained from 27 dairy, 38 beef and 29 veal farms, were sequenced by long-read nanopore sequencing. Consensus sequences were used to generate a phylogenetic tree in order to associate genetic clusters with cattle sector, geographical area and year of isolation. The phylogenetic analysis of the Belgian M. bovis isolates resulted in 5 major clusters and 1 outlier. No sector-specific M. bovis clustering was identified. On a world scale, Belgian isolates clustered with Israeli, European and American strains. Different M. bovis clusters circulated for at least 1.5 consecutive years throughout the country, affecting all observed industries. Therefore, the high prevalence in the veal industry is more likely the consequence of frequent purchase from the dairy and beef industry, than that a reservoir of veal specific strains on farm would exist. These results emphasize the importance of biosecurity in M. bovis control and prevention.
Arifa S Khan, Johannes Blümel, Dieter Deforce, Marion F Gruber, Carmen Jungbäck, Ivana Knezevic, Laurent Mallet, David Mackay, Jelle Matthijnssens, Maureen O'Leary, Sebastiaan Theuns, Joseph Victoria, Pieter Neels (2020)
DOI: 10.1016/j.biologicals.2020.06.002, Biologicals
The IABS-EU, in association with PROVAXS and Ghent University, hosted the "2nd Conference on Next Generation Sequencing (NGS) for Adventitious Virus Detection in Human and Veterinary Biologics" held on November 13th and 14th 2019, in Ghent, Belgium. The meeting brought together international experts from regulatory agencies, the biotherapeutics and biologics industries, contract research organizations, and academia, with the goal to develop a scientific consensus on the readiness of NGS for detecting adventitious viruses, and on the use of this technology to supplement or replace/substitute the currently used assays. Participants discussed the progress on the standardization and validation of the technical and bioinformatics steps in NGS for characterization and safety evaluation of biologics, including human and animal vaccines. It was concluded that NGS can be used for the detection of a broad range of viruses, including novel viruses, and therefore can complement, supplement or even replace some of the conventional adventitious virus detection assays. Furthermore, the development of reference viral standards, complete and correctly annotated viral databases, and protocols for the validation and follow-up investigations of NGS signals is necessary to enable broader use of NGS. An international collaborative effort, involving regulatory authorities, industry, academia, and other stakeholders is ongoing toward this goal.
Ruifang Wei, Jiexiong Xie, Sebastiaan Theuns, Hans J Nauwynck (2019)
DOI: 10.1093/ve/vez026, Virus Evolution
Porcine circovirus type 2 (PCV2) is the primary causative agent of porcine circovirus-associated diseases (PCVAD). Three major PCV2 genotypes (PCV2a, PCV2b, and PCV2d) have been identified globally. Despite their worldwide distribution, the prevalence and genetic evolution of PCV2 in Belgium has not previously been determined. In this study, 319 samples from animals suffering from diseases likely to be associated with PCV2 were collected from 2009 to 2018 and analysed by virus titration. The overall prevalence of PCV2 in PCVAD-suspected cases was 15.7 per cent (50/319). The phylogenetic analysis demonstrated that at least three genotypes (PCV2a, PCV2b, and PCV2d) circulated in Belgium from 2009 till 2018, and that PCV2 evolved from PCV2a to PCV2b and from PCV2d-1 to PCV2d-2. Sequence comparison among the forty-three PCV2 isolates showed that they had 89.7-100 per cent nucleotide-sequence and 88.5-100 per cent amino-acid-sequence identities. Three amino acid sites were under positive selection. Three-dimensional analysis of genotype-specific amino acids revealed that most of the mutations were on the outside of the cap protein with a few conserved mutations present on the inner side. Mutations toward more basic amino acids were found on the upper and tail parts of two connecting capsid proteins which form one big contact region, most probably involved in receptor binding. The lower part was relatively conserved. This polarity change together with the formation of an extruding part drive the virus to a more efficient GAG receptor binding. Taken together, these results showed a genotype shift from PCV2a to PCV2b and later on from PCV2d-1 to PCV2d-2, and a PCV2 evolution toward a better receptor binding capacity.
Sebastiaan Theuns, Bert Vanmechelen, Quinten Bernaert, Ward Deboutte, Marilou Vandenhole, Leen Beller, Jelle Matthijnssens, Piet Maes, Hans J Nauwynck (2018)
DOI 10.1038/s41598-018-28180-9, Scientific Reports
Enteric diseases in swine are often caused by different pathogens and thus metagenomics are a useful tool for diagnostics. The capacities of nanopore sequencing for viral diagnostics were investigated here. First, cell culture-grown porcine epidemic diarrhea virus and rotavirus A were pooled and sequenced on a MinION. Reads were already detected at 7 seconds after start of sequencing, resulting in high sequencing depths (19.2 to 103.5X) after 3 h. Next, diarrheic feces of a one-week-old piglet was analyzed. Almost all reads (99%) belonged to bacteriophages, which may have reshaped the piglet's microbiome. Contigs matched Bacteroides, Escherichia and Enterococcus phages. Moreover, porcine kobuvirus was discovered in the feces for the first time in Belgium. Suckling piglets shed kobuvirus from one week of age, but an association between peak of viral shedding (106.42-107.01 copies/swab) and diarrheic signs was not observed during a follow-up study. Retrospective analysis showed the widespread (n = 25, 56.8% positive) of genetically moderately related kobuviruses among Belgian diarrheic piglets. MinION enables rapid detection of enteric viruses. Such new methodologies will change diagnostics, but more extensive validations should be conducted. The true enteric pathogenicity of porcine kobuvirus should be questioned, while its subclinical importance cannot be excluded.
Nádia Conceição-Neto, Sebastiaan Theuns, Tingting Cui, Mark Zeller, Claude Kwe Yinda, Isaura Christiaens, Elisabeth Heylen, Marc Van Ranst, Sebastien Carpentier, Hans J Nauwynck, Jelle Matthijnssens (2017)
DOI: 10.1093/ve/vex024, Virus Evolution
Diarrhea outbreaks in pig farms have raised major concerns in Europe and USA, as they can lead to dramatic pig losses. During a suspected outbreak in Belgium of porcine epidemic diarrhea virus (PEDV), we performed viral metagenomics to assess other potential viral pathogens. Although PEDV was detected, its low abundance indicated that other viruses were involved in the outbreak. Interestingly, a porcine bocavirus and several enteroviruses were most abundant in the sample. We also observed the presence of a porcine enterovirus genome with a gene insertion, resembling a C28 peptidase gene found in toroviruses, which was confirmed using re-sequencing, bioinformatics, and proteomics approaches. Moreover, the predicted cleavage sites for the insertion suggest that this gene was being expressed as a single protein, rather than a fused protein. Recombination in enteroviruses has been reported as a major mechanism to generate genetic diversity, but gene insertions across viral families are rather uncommon. Although such inter-family recombinations are rare, our finding suggests that these events may significantly contribute to viral evolution.
Sebastiaan Theuns, Nádia Conceição-Neto, Isaura Christiaens, Mark Zeller, Lowiese M B Desmarets, Inge D M Roukaerts, Delphine D Acar, Elisabeth Heylen, Jelle Matthijnssens, Hans J Nauwynck (2015)
DOI: 10.1128/genomeA.00506-15, Genome Announcements
Porcine epidemic diarrhea virus (PEDV) is a member of the family Coronaviridae and can cause severe outbreaks of diarrhea in piglets from different age groups. Here, we report the complete genome sequence (28,028 nt) of a PEDV strain isolated during a novel outbreak in Belgium.
Sebastiaan Theuns, Elisabeth Heylen, Mark Zeller, Inge D M Roukaerts, Lowiese M B Desmarets, Marc Van Ranst, Hans J Nauwynck, Jelle Matthijnssens (2015)
DOI: 10.1128/JVI.02513-14, Journal of Virology
Group A rotaviruses (RVAs) are an important cause of diarrhea in young pigs and children. An evolutionary relationship has been suggested to exist between pig and human RVAs. This hypothesis was further investigated by phylogenetic analysis of the complete genomes of six recent (G2P[27], G3P[6], G4P[7], G5P[7], G9P[13], and G9P[23]) and one historic (G1P[7]) Belgian pig RVA strains and of all completely characterized pig RVAs from around the globe. In contrast to the large diversity of genotypes found for the outer capsid proteins VP4 and VP7, a relatively conserved genotype constellation (I5-R1-C1-M1-A8-N1-T7-E1-H1) was found for the other 9 genes in most pig RVA strains. VP1, VP2, VP3, NSP2, NSP4, and NSP5 genes of porcine RVAs belonged to genotype 1, which is shared with human Wa-like RVAs. However, for most of these gene segments, pig strains clustered distantly from human Wa-like RVAs, indicating that viruses from both species have entered different evolutionary paths. However, VP1, VP2, and NSP3 genes of some archival human strains were moderately related to pig strains. Phylogenetic analysis of the VP6, NSP1, and NSP3 genes, as well as amino acid analysis of the antigenic regions of VP7, further confirmed this evolutionary segregation. The present results also indicate that the species barrier is less strict for pig P[6] strains but that chances for successful spread of these strains in the human population are hampered by the better adaptation of pig RVAs to pig enterocytes. However, future surveillance of pig and human RVA strains is warranted.
Importance: Rotaviruses are an important cause of diarrhea in many species, including pigs and humans. Our understanding of the evolutionary relationship between rotaviruses from both species is limited by the lack of genomic data on pig strains. In this study, recent and ancient Belgian pig rotavirus isolates were sequenced, and their evolutionary relationship with human Wa-like strains was investigated. Our data show that Wa-like human and pig strains have entered different evolutionary paths. Our data indicate that pig P[6] strains form the most considerable risk for interspecies transmission to humans. However, efficient spread of pig strains in the human population is most likely hampered by the adaptation of some crucial viral proteins to the cellular machinery of pig enterocytes. These data allow a better understanding of the risk for direct interspecies transmission events and the emergence of pig rotaviruses or pig-human reassortants in the human population.
This is the PhD thesis of Dr. Sebastiaan Theuns, publicly defended in 2015.
Promoters:
Prof. dr. Hans Nauwynck, Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University
Prof. dr. Jelle Matthijnssens, Laboratory of Viral Metagenomics, Rega Institute for Medical Research, KU Leuven